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Believable Agents must be able to handle a large number of goals, opportunistically acting on 
them while maintaining a focus of purpose. They also must be able to operate over long life times 
without significant performance degradations. We describe in this paper a method of managing an 
agent's goals so that the agent can make progress on as many goals as possible, without spending 
undue time considering goals that it can't make progress on. The key part of this method is a 
way of specializing and generalizing the set of perceptual cues that are used to bring a goal into 
consideration by the agent. The method is described via a simple example. 
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1     Introduction 

Would you be willing to use a travel agent who could schedule trips for at most ten people at 
a time? Would you use a stock broker who failed to make a small, simple transaction for you, 
because he was waiting for somebody else's large, complex transaction to finish? How would you 
feel about a secretary who constantly scheduled other meetings for you during your weekly meeting 
with the boss? Behaviors like these from humans would be unexpected and jarring. The ability 
to intend to act, delay action, and remember to act when appropriate for large numbers of goals 
is an essential characteristic of people performing everyday tasks over long lifetimes. For that very 
reason, we contend it is also an essential characteristic of believable software agents. No matter 
what their domain of expertise, if they are to live long and useful lives, they must be able to juggle 
large numbers of goals of various durations effectively. Without this characteristic, software agents 
will be believable as absent-minded, inattentive, or forgetful children, at best. 

We have created an agent, Laureli, and an environment, Laureli's World, to address this fun- 
damental issue: what structures and mechanisms must an agent have such that she can effectively 
juggle large numbers of potentially interacting goals of different durations over a long lifetime? By 
effective, we mean that Laureli must continue to act at a reasonable rate, managing her goals so 
that she accomplishes most of them in time with the world. Our approach to the complexity of 
managing many goals is to pay a computational cost only for those goals Laureli can make progress 
on at any particular time. To do this, Laureli suspends goals when a lack of progress is noticed, at 
the same time creating a method to reactivate the goal when further progress can be achieved. 

A balance must be struck between over-generalization and over-specialization when creating the 
conditions for activating a goal. The former causes the goal to entail computational cost when no 
progress can be made, the latter can prevent reactivation when progress is expected to be possible. 
In this paper we introduce Laureli and her world, and focus on the domain-independent mechanisms 
for creating, generalizing and specializing reactivation conditions. 

2    Architecture 

We chose the mechanisms used to create Laureli so that Laureli, and other agents, might be 
able to survive for long periods of time without significant slowdown. An additional criteria was 
that the mechanisms be domain independent, so that the essential characteristics outlined in the 
introduction should be available across domains as part of the basic architecture of the agent. In 
this section we describe the assumptions and architectural constructs our solution requires. 

Figure 1 shows a high-level picture of the relevant portions of the agent architecture. We require 
six basic components in addition to an external world simulation:1 

• A perceptual system 

• A motor system 
• A working memory connected to the perceptual and motor systems 

• A long-term rule-based memory 

although Laureli is implemented in Soar [Laird and Rosenbloom, 1987], our list abstracts away from Soar. As 
shown, the mechanisms can be specified in a Soar-independent fashion, although it must be admitted that these 
mechanisms work very efficiently in Soar, and taken as a whole, Soar is the only architecture that currently provides 
all of them. 
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Figure 1: Architecture supporting Laureli 

• An efficient match algorithm that triggers rules by instantiating them with working memory 
elements 

• A learning mechanism that creates new rules 

The perceptual system places a world description in working memory as a data structure of 
working memory elements (WMEs). These WMEs describe objects in the world and relationships 
between objects. The if part of the if-then rules in the long-term memory are matched against 
this description of the world, and any rule that matches can modify the description via its then 
portion. Modification can include the addition of goals that the world description evokes. If, in the 
service of a goal, certain portions of the working memory are changed (indicated by the grey box 
in Figure 1), then these changes are interpreted as an action-request by the motor system, which 
passes them on to the external world simulation. 

As the figure shows, a goal may reside in any of three areas: the active set in short-term memory, 
the inactive set in short-term memory, or in long-term memory. Laureli's behavior at any moment 
depends on her top-goal (dotted box in the figure). This is the goal she has deliberately chosen 
to pursue during the current processing cycle. The top goal is chosen from among the agent's 
active set of goals in short-term memory. Picking a top-goal involves analyzing each active set goal 
deciding the goal's importance in relation to other active goals, and deciding whether working on 
that goal will interact with other goals in such a way that it should not be picked. We call this 
way of managing the set of appropriate goals top-level control of the agent. 

The existence of two functionally different memories is key to keeping the agent's top-level 
control tractable over a long lifetime. Since the computational cost of making importance and 
conflict decisions is exponential in the number of goals in the active set, we want to keep that part 
of short-term memory as small as possible. On the other hand, by using the learning mechanism 
to move goals into long-term memory, the cost of the match algorithm grows at most linearly in 
the number of rules [Doorenbos, 1994]. Keeping a goal in short-term memory in the inactive set is 
also more expensive than keeping it in long-term memory because it can increase the combinatorics 



Top-level Control 

1 Only one goal is actively pursued at a time. 

2 Goals are only considered when either 
progress can be made or a conflict arises. 
Goals that do not contribute to a decision 
are not included in the decision process. 

3 A single task-independent method is used 
to move goals into and out of active set. 

3a How to move a goal into and out of the 
active set is independent of task features. 

3b When to move a goal into and out of the 
active set is determined by task features 
and the execution situation. 

Operating System 

1 Only one task can execute on the processor 
at a time. 

2 Operating systems maintain two lists of 
tasks, one with suspended tasks and one 
with tasks that are available to become the 
actively executing task. 

3 A single task-independent method is used 
to move tasks into and out of active set. 

3a When an event "wakes-up" a suspended 
task, the OS simply changes what list it 
is on. 

3b Specific, hard-coded types of events cause 
a task to be suspended or woken up. 

Figure 2: Analogy between top-level control and an operating system 

of the match process. Thus, the optimal scheme would be a mechanism that keeps all goals in 
long-term memory except (1) those that can make progress in the current situation and, (2) those 
whose projected continuations create a potential resource conflict with a goal satisfying (1). This 
is the essence of our approach.2 The scheme is conceptually similar to Birnbaum's "elaborate and 
index" mechanism for recalling goals [Birnbaum, 1986]. The actual movement mechanisms are 
described in Sections 3.4 and 3.5. 

2.1    Top-level control is like an operating system 

The way that moving goals into and out of short-term memory is managed in Laureli is similar 
to the way multi-tasking is handled in an operating system like Unix. Figure 2 shows the important 
analogies between operating systems and top-level control. The first item shows that both assume 
a serial bottleneck in a critical resource. Just as only one task can execute on a serial processor 
at a time, only one goal can be deliberately pursued by Laureli at a time. Any parallelism in the 
processing of tasks occurs only in the input and output portions of the architecture. In Laureli, the 
motor system and perceptual system can operate independently of the top-level control. Likewise, 
in a multi-tasking operating system some parallelism can exist in the disk controllers and other 
hardware. The important point is that there is one resource in each system where the processing 
of tasks is serialized. 

Limiting the processing to one goal or task at a time means each system must have a method for 
switching its executing goal or task. Item 2 of Figure 2 shows that when switching, both systems 
consider only the goals or tasks that can make progress. In the case of an operating system, for 
example, you can have many windows on your screen, but the operating system only looks at the 
one in which you are typing.   The other windows receive no processing; they are tasks that are 

2 The current system is an approximation of this optimal scheme in that it uses the inactive set in short-term 
memory as a temporary redundant place-holder for goals in long-term memory under some conditions. Because the 
use of short-term memory is redundant, the architecture's efficient match algorithm can still be used to move goals 
into the active set. There may be some small additional cost to the redundant use of short-term memory, although 
we have not yet measured this. 



suspended waiting for an external event (typing) to make them active. In a similar way, top-level 
control considers only those goals the agent can make progress on when deciding which goal to 
pursue. The goals in short-term memory's active set are the goals the agent thinks it can make 
progress on. The goals not considered, either in short-term memory's inactive set or in long-term 
memory, are called suspended. 

Item 2 also refers to the issue of interactions among goals in top-level control and among tasks 
in an operating system. Interactions can occur between any goals; the status (active or suspended) 
of the goals is not important. Similarly, the status of the tasks is not important in resolving 
operating system conflicts such as whether or not another task has entered a mutually exclusive 
area. Although we recognize this issue as key, we do not address it at this time. 

Item 3 in Figure 2 is where Laureli's top-level control starts to differ from an operating system. 
Both have a task-independent way to move goals (or tasks) from active to suspended status and 
back. Both define an inability to make progress, or slack time, as one reason to move from active 
to suspended status. However, the operating system has a pre-defined set of conditions (like a new 
keystroke in a window) that describes when the change from the suspended list to the active list 
should occur. In our agent, features of the goal being attempted and the plan chosen to achieve 
the goal determine when the goal should be moved back from long-term to short-term memory. 
In general, the right set of features has to be determined by analyzing the goal, the plan, and the 
situation, and cannot be listed a priori. As a by-product of the analysis process, Laureli learns 
a new rule that effectively transfers the goal to long-term memory. The if portion of the rule 
encapsulates the analysis of when to reactivate the goal. When the match process can bind the 
conditions in the if portion to working memory elements provided by the current world description, 
the then portion of the rule is used to place the goal back into short-term memory. 

3     Description of Laureli's Behavior 

To ground our discussion of how goals change status, we explore two examples of Laureli's 
behavior. Laureli lives in the world shown in Figure 3. Day after day, she goes to a meeting at 
work and then, later, comes home. To get to the meeting, Laureli walks from the bedroom of her 
home to her car in the driveway, gets into the car, drives to the parking lot, and then walks to the 
conference room. She follows the inverse path to get home. 

So far in her very everyday existence, Laureli has gone to work and come home for more than 
300 simulated days. Over the course of that experience, she develops long-term, episodic memories 
of all her trips, with each trip identified by a unique constant. Besides distinguishing a trip from 
all the other trips of the same type, this constant provides the thread linking the representations 
of the goal together as it moves back and forth from short-term memory to long-term memory. We 
call a goal with an assigned constant a token goal, as opposed to a type goal (without a constant), 
because it represents a particular instance of the type. 

The bottom of Figure 3 gives a more detailed description of the goal types as we will use them 
in the rest of this paper. Each goal type has an activation stimulus which is the set of features 
that have to be present in the perceived world for a goal to be active. As an example, the Goto- 
work goal arises whenever Laureli looks at her watch and recognizes it is morning and it is a 
weekday. The goals (eg: Drive-close-to-location) that have negated conditions in their stimulus are 
subgoals of some other goal. The negated conditions come from a means-ends-analysis difference 
analysis [Newell and Simon, 1972]. Each goal type also has an expected completion situation that 
indicates that the goal has been completed. The activating situations and the completion situations 
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Office 

Conference 
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Goal Type Activation Stimulus Final Situation 

Go-to-meeting morning & weekday at conference-room 

Go-home evening k at-work at Laureli's bedroom 

Drive-close-to-location not (at desired-location) k 
parkable-location close-to desired-location k 
desired-location far from current-location k 

car is near to current-location 

close-to desired location 

walk-to-location not (at desired-location) k 
desired-location near to current-location 

at desired location 

start-car not(car-running ) k car-running is desired car-running 

Figure 3: Laureli's world and a selection of Laureli's goals 

DURATIONS   Activation Stimulus *- 
  Task *- 

EXAMPLES 
Extended Stimulus Tasks 

Go to meeting 
Self-negating Tasks 

Start Car 
Extended Response Time Tasks 

Go home 

Figure 4: Temporal extent of goals compared to temporal extent of activation stimuli 

are independent of each other in general, and the consequences of this independence is discussed 

next. 

3.1    Temporal extent of tasks 

In the remainder of this paper, we use the word task to mean the combination of a goal and a plan 
chosen to achieve the goal. Thus, each goal in Figure 3 entails a task and this task takes time to 
accomplish, i.e. has a temporal extent. In this section, we examine the simplest situations Laureli 
might find herself in, where each of Laureli's tasks is pursued to completion without interruption. 
By looking at this simple case we can classify the tasks by properties of their temporal extents. 

Figure 4 shows all the possible comparisons of a single task's temporal extent to the temporal 
extent of the activation stimuli that gave rise to the task's goal. The first column of Figure 4 
represents the case where the duration of the activation stimulus exceeds the time it takes to 
do the task. An example of this situation in Laureli's world occurs for the go-to-meeting goal 
whose completion-situation (at conference-room) is satisfied while its activation-stimulus (weekday 
k morning) is also true. Thus, unless a mechanism is added to the architecture shown in Figure 1 
to remove this satisfied goal, the goal of going to the meeting will be active even while Laureli is 
at the meeting. The mechanism that we use is to mark tasks completed when their corresponding 



goal's completion-situation is satisfied. This, in turn, removes the goal from the active set, although 
they remain in short-term memory for as long as their activation conditions are true. Of course, 
since they are no longer in the active goal set, completed goals do not add to the cost of selecting 
the goal for the top-goal slot.3 

In the case represented by the second column of Figure 4 (Self-negating tasks), the duration 
of the stimulus conditions coincides with the duration of the task. This happens whenever the 
outcome of a task negates some stimulus condition. In Laureli's world, for example, part of the 
activation stimulus for the goal of starting the car is that the engine is not running. When the 
engine is running we simultaneously complete the start car task and negate the engine not running 
stimulus. Thus Laureli recognizes the completion of the start engine task, and she deliberately 
selects another task to work on. Also, since the completed task's activation conditions are no 
longer true, it is automatically removed from short-term memory. 

In the final case (Extended Response Tasks), the activation stimulus duration is shorter than 
the time it takes to do the task. An example from Laureli's world is the go-home task.4 The 
activation conditions include Laureli being at work. Somewhere on the way home Laureli is no 
longer considered at-work, it doesn't matter where. The loss of the activation stimulus causes 
the go-home goal to be removed from the active goal set. However, even though the activation 
stimulus is gone, Laureli doesn't lose her focus on getting home, because the goal of going home is 
the currently selected top-level goal (i.e. is in the top-goal slot in Figure 1). Since Laureli hasn't 
deliberately changed what she was doing, she continues with the go-home goal. Of course, if Laureli 
were to decide to pursue some other goal in the time it takes her to go home, the go-home goal 
would need some new activation stimuli to remain active. This is the situation we turn to in the 
next section. 

3.2    Deliberate Suspension 

Most of the goals Laureli (or any reasonable agent) pursues are not pursued myopically to comple- 
tion. The first two goals at the bottom of Figure 3, for example, exist for extended periods of time 
since, in Laureli's world, it takes 20 minutes to drive to work and back. The driving is modeled 
at a very large grain and takes no effort on Laureli's part once she has set the car in motion (it is 
more like a taxi ride). It would seem absurd if she sat there simply repeating "go to work, go to 
work" until she arrived at the parking lot. Similarly, it would be absurd if she attended to other 
tasks while in motion (like planning what will happen in the upcoming meeting) but failed to note 
that she had achieved her goal when she arrived at the parking lot. 

The generalization of this type of capability is to allow less important tasks some processing 
power when a more important task is suspended waiting for some external event to occur. However, 
some care must be taken so that the less important task interferes only minimally with the more 
important, suspended, task. We don't want Laureli to start driving to the grocery store, or worse, 
open the door to get out of the car, while driving to the meeting. 

In the architecture of Figure 2, switching from the go-to-meeting goal to some other goal means 
3As mentioned in Section 2, goals on the inactive list do carry some computational cost. However, having the 

recently completed goals in short-term memory does not seem to be a large issue because the incremental match cost 
is small and because the completed goals only persist in short-term memory for a limited time. 

4 Obviously, the go-to-work and go-home tasks are symmetric and could both be considered as either extended 
stimulus or extended response tasks. We have given them asymmetric activation conditions in order to have a simple 
example of each class in this section, and motivate the different solutions to the problem of forming reactivation 
conditions in Sections 3.4 and 3.5. 



1. Notice Slack time 

2. Anticipate expected response, via lookahead in visualized world. This builds the continuation 

rule. 

3. Remove goal from top-level slot, and prevent re-selection. 

4. When expected response occurs, the continuation rule matches making the goal available again 

by moving it to the active set. 

Figure 5: Slack time suspension procedure 

that Laureli has to deliberately remove the go-to-meeting goal from the top-goal slot and inhibit 
its reselection as the new top-goal. At the same time, a method needs to be built for bringing the 
goal back into the active goal set so that it can be re-selected in the future. We call this entire 
removal and re-activation building process suspending the goal. Goal suspension moves the goal 
into long-term memory until it is reactivated. The issues in suspending the current top-goal are: 

When out - We will use slack time. Slack time is the time between requesting an action and 
getting the expected response. In our example, the only instance of significant slack time is 

the drive to and from work. 

Progress - When the goal gets re-chosen as the top-goal, progress-to-date on that goal has to be 
represented. We do not describe the progress mechanisms in this paper. 

When in - When the slack time is over. In our example, when the car reaches the destination. 
This is not when the suspended goal is chosen again as the top-goal, but instead when the 
goal again becomes part of the active set and is, thus, available for selection as the top-goal. 

Figure 5 describes at a high level how the suspension of the current top-goal is done. Slack 
time is noticed by having an action-request sent through the motor system without recognizing 
its expected response in the perceived world. In step 2, the long-term memory rule is built that, 
when triggered by the expected response, will make the goal active again. This rule is called the 
continuation of the goal. The conditions of the f/portion of the continuation are built by an EBL5- 
like process (Soar's chunking mechanism). The learner works with a copy of the world description 
that has been modified to look like a future world description via a visualization process. By using a 
one-step lookahead in the plan being used to achieve the goal, the EBL process extracts from all the 
possible information in the visualized world only those portions pertinent to re-activating the goal. 
We expand on the visualization and lookahead processes in Section 3.3. Once the continuation has 
been built, step (3) in the suspension process removes the goal from the top-goal slot and prevents 
its re-selection. Once step 3 has been done, other goals can contend for the top-goal slot. Of course, 
any of those goals may also lead to actions with slack time, continuations, etc. However, when the 
world matches the continuation built in step 2, the goal suspended in step 3 will become active 

again and can contend for selection as the top-goal of the agent. 

3.3    Visualization and Lookahead 

The purpose of step 2 in Figure 5 is to build the continuation rule so that, at some time in the 
future, the suspended goal can become active again. Lookahead and visualization are the methods 

5Explanation Based Learning [Mitchell et al., 1986] 
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Figure 6: Relationships between slack time and activation stimulus conditions 

of including domain-specific knowledge in the continuation in a domain-independent way. 

Since the learning mechanism must construct rule conditions that will match some future short- 
term memory description of the world, we first need to construct a possible version of that future 
world description. We call this construction process visualization. Visualization occurs by aug- 
menting a copy of the current world description with the expected response of the action-request 
that caused the suspension. The expected response is assumed to be available from some memory 
of requesting this, or a similar, action in the past. 

In general, the visualized world could contain at least as much detail as the world description 
currently supported by perception. In addition, visualizing the outcome of the action-request adds 
information that is important to continuing the current task. However, with regard to continuing 
the task, the visualized world as a whole contains other, unnecessary information. If we included 
all of the visualized detail in the conditions for continuation, the resulting rule would be hopelessly 
overspecific. Instead, we want to anticipate a world description in which progress on this task can 
be made. To focus the EBL process on the correct level of detail, we use the visualized world to 
execute a single-step lookahead on the plan for achieving the goal. The learning mechanism then 
automatically produces a continuation rule testing only those elements that the system's current 
knowledge indicate are critical for making progress. 

The lookahead is done in two steps; setting up the goal context, and looking for the next step 
in the plan. The visualized world is a complete copy of the short-term memory portion of the 
architecture (see Figure 1), including its own top-goal slot. Setting up the goal context means 
placing a copy of the real top-goal in the visualized world's top-goal slot. Having the same goal in 
the visualized world's top-goal as in the real world's top-goal provides us an index into the current 

plan being followed in the real world. 

Once the visualized world's top-goal is selected, we can use the situation found in the visualized 
world to find the next step in the plan. The search for the next step is encapsulated by the EBL 
process into the conditions of the long-term memory continuation rule. Having the same short-term 
memory structure in the visualized world as is used in representing the real world means that the 
long-term memory rule learned in the visualized world will apply in similar real world situations. 

Another way to think about what conditions should be used to reactivate a goal is to focus on 
the relationship between the activation stimulus and the state of the world at the end of the slack 
time. In Figure 6 we show the possible relationships between the temporal extent of the activation 
stimulus and the slack time. If the activation stimuli will exist at the end of the slack time (first 
column of the figure), then it will exist in the visualized world and we will be able to specialize these 
activation conditions to build the continuation. We will specialize the original activation conditions 
by adding some condition that is true in the visualized world (i.e. at the end of the slack time) that 
indicates further progress can be made on this goal, and that is not true during the slack time. 



Intention to Do Goal 
_,    , _ .    ,       (create Token 
Goal Recognized Go-to-meeting-112) 
(morn & wkday 

—> 
Go-to-meeting) 

Start Driving 
(Issue start-driving action-request) 

Slack Time Recognized 
(Terminate Go-to-meeting-112 
Build Reactivate Go-to-meeting-134) 

At Parking-lot 
(Activate Go-to-meeting-134) 

At Conf-room 
(Recognize completion 
of Go-to-meeting-134) 

Recognize 
Slack time 

Modify Visualized 
World with result 

Lookahead finds 
Walk (Conf-room) 

Create Visualized 
World 

Select Go-to-meeting-112 
as visualized world's top-goal. 
Modify it to be Go-to-meeting-134 

Mark Go-to-meeting-112 
continued-by Go-to-meeting-134 

Continuation Go-to-meeting-134     Remove Go-to-meeting-112 
built for Go-to-meeting-112 from top-goal slot 

Figure 7: Timeline for the go-to-meeting goal 

The other two columns of Figure 6 show cases when the activation stimuli are not true at the end 
of the slack time, and therefore are not available in the visualized world. The activation conditions 
for the continuation cannot contain the initial activation conditions, for we know they won't hold, 
but instead must be formed from some other domain knowledge. We call this case generalization 
because it creates an entirely new set of activation conditions for the continuation of the goal. This 
new set will match in cases where the original activation conditions would not. 

In general, specialization is preferred over generalization as it provides more restriction on when 
the goal is in the active set. The generalization procedure produces relatively general activation 
conditions for the continuation because it does not use any specialized domain knowledge to pick the 
correct set. It just uses the one-step lookahead. Thus continuations generated by the generalization 
process might have to go through the specialization process before a reasonably restrictive set of 
activation conditions are found. In the next two sections, each of specialization and generalization 
is explained via examples in turn. 

3.4    Specialization 

In the specialization case the activation stimulus exists throughout the slack time. Thus, to work on 
some task other than the one associated with the current top goal, we must both suspend the current 
top goal and create a continuation which adds conditions to the current activation stimulus. The 
extra conditions restrict the goal from being considered during the temporal interval corresponding 
to the slack time. As an example, consider the go-to-meeting goal. Its initial activation stimuli are 
the descriptors morning and weekday in short-term memory. To take advantage of the time Laureli 
is en route to the meeting (the slack time), we want to build a continuation that will re-activate the 
go-to-meeting goal when further work on this goal can make progress. It turns out the descriptor 
at-work-parking-lot is used in conjunction with the initial activation descriptors. Figure 7 shows 
how creation, suspension, and the specialized continuation for this goal occurs. 

As expected, morning and weekday lead Laureli to recognize the goal of going to the meeting (A). 
As a result, the token goal go-to-meeting-112 is added to the active set, and is subsequently selected 
as Laureli's top-goal (§). Sometime later, Laureli issues the start-driving action request ©, and soon 
after, recognizes that she is in slack time ©. Laureli now begins the visualization and lookahead 
process described above and expanded in the lower timeline of Figure 7. After recognizing slack time 
(D, Laureli creates a copy of the current world description ©. She then anticipates the successful 
conclusion of the action request, i.e. she imagines herself in the parking lot at work ©. Since the 



Intention to Do Goal 
(create Token Go-home-145) 

Goal Recognized 
(eve. & at work --> 

Go-home) 

® 
Not at work 

Go-home goal 
retracts 

Slack Time Recognized 
(Terminate Go-home-145 & 
Build Continuation Go-home-187) 

Start Driving 
(Issue start-driving action-request) 

At driveway 
(Propose Go-home-187) 

At bedroom 
(Recognize completion of 
Go-home-187) 

Recognize 
Slack time 

Modify Visualized 
World with result 

Lookahead finds 
Walk (Bedroom) 

Mark Go-home-145 
Continued-by Go-home-187 

Create Visualized 
World 

Create 
Go-home-187 

Continuation Go-home-187 
built for Go-home-145 

Remove Go-Home-145 
from top-goal slot 

Figure 8: Timeline of go-home goal 

initial activation stimuli are still true in the visualized world (§), they will form the context for the 
lookahead and the basis for the continuation (go-to-meeting-134). Since being at the parking lot is 
sufficient to enable the next step in Laureli's plan (walking to the conference room) ©, lookahead 
will result in at-work-parking-lot being added to the continuation stimuli for go-to-meeting-134. 
The conditions and actions form a complete continuation rule that is added to long-term memory 
(B). The go-to-meeting-112 is now marked that it is continued by goal go-to-meeting-134 (7). This 
results in go-to-meeting- 112's removal from the active set and from the top-goal slot (B), making 
pursuit of other goals possible in the remaining slack time. When the car arrives at the parking lot, 
the continuation rule matches allowing the go-to-meeting-134 goal to be selected as the top-goal 
again (E). Finally, Laureli gets to the conference room and the go-to-meeting-134 goal is recognized 
as completed and removed from the active set with no further continuations built (£). 

3.5     Generalization 

In the case of generalization, the current activation stimuli is not true in the visualized world, 
and therefore not expected to be true when slack time is over. Thus, we will have to find some 
descriptors in the visualized world that can act as stimuli for the continuation. Since generalization 
doesn't rely upon any of the current activation stimuli, it can create a whole new set of activation 
conditions for continuation. This is similar to creating a disjunctive set of activation conditions 
for the goal. As an example, consider the go-home goal. Its initial activation stimuli are the 
descriptors evening and at-work in short-term memory. To take advantage of the time Laureli is en 
route to home (the slack time), we want to build a continuation that will re-activate the go-home 
goal when further work on this goal can make progress. The descriptor at-driveway-at-home is such 
a condition (and will turn out to be the only test on the continuation). Figure 8 shows how the 

suspension and generalized continuation of the goal occurs. 

When she is at work in the evening, Laureli recognizes that she has a goal to go home @. 
As above, the token goal go-home-145 is added to the active set, and is subsequently selected as 
Laureli's top-goal (§). Sometime later Laureli issues the start-driving action request ©. Almost as 
soon as the driving starts, Laureli is no longer considered at-work, and so the initial activation 
stimuli for the go-home goal are no longer true ©. Laureli continues to go home because go-home- 
145 is the currently selected top-goal. However, soon she recognizes that she is in slack time ©. 
Laureli now begins the visualization and lookahead process described above and expanded in the 
lower timeline of Figure 8. After recognizing slack time (T), Laureli creates a copy of the current 
world description (2). She modifies this copy with the expected result of the action request ©. Since 
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the activation stimuli are not true in the visualized world, the continuation goal (go-home-187) 
does not automatically include any of the activation conditions of go-home-145 (§). The lookahead 
can now proceed and finds that when Laureli is at the driveway at home, she should walk to her 
bedroom (5). Since the activation conditions are not true in the visualized state, the conditions for 
the continuation are just those of the lookahead step. The action component of the continuation 
rule is to propose go-home-187 as a new goal. This rule now gets added to long-term memory ©. 
Now the go-home-145 goal is marked "continued-by go-home-187" (7). This results in the go-home- 
145 goal's removal from the active set and from the top-goal slot (H), making pursuit of other goals 
possible in the remaining slack time. When the car arrives at the driveway the continuation rule 
applies creating the go-home-187 goal which is selected to be the new top-goal ©. Finally Laureli 
gets to her bedroom, and go-home-187 is marked completed and removed from the active set ©. 

4    Discussion 

We are examining the issues that arise when agents live a long time in a changing environment. 
We believe such an agent requires special mechanisms to allow it to focus on only a small set of 
its goals at any time. Such mechanisms allow the agent to pursue goals with extended durations 
by interleaving their substeps with those of other goal-directed activities, as time permits. The 
work described here has much in common with the approach outlined in [Bratman et al, 1988] and 
found in systems like HAP [Loyall and Bates, 1993], Runner [Hammond, 1989] and Pareto [Pryor, 
1994]. 

Creation of a method that will dynamically compose the re-activation conditions for a suspended 
goal distinguishes this work from HAP, where the programmer designates the reactivation conditions 
at design time. Both Runner and Pareto decide how to continue the goal at run-time by analyzing 
the goal and choosing from a pre-determined set of re-activation conditions. Neither system can 
extend the analysis if the initial analysis produces re-activation conditions that are either too specific 
or too general (in fact, they have no mechanism for determining overgenerality or overspecificity). 
Laureli can extend its analysis at each instance of suspension by adding or removing domain- 
specific conditions in a domain-independent way. This allows the system a limited ability to tailor 
reactivation conditions on the fly as the goal moves through different stages across its duration. 

Our methodology seems most similar to the way Hammond's Runner suspends goals and rec- 
ognizes when they should become active again [Hammond, 1989]. However, Hammond seems to 
treat all continuations as generalizations. Once a goal has started in Runner, it seems to continue 
independent of its activation stimulus. As a result, Runner needs a domain model that explicitly in- 
dicates which pre-conditions for a goal are persistent, etc., in order to decide which conditions make 
an appropriate index for his continuation goals. What Hammond is trying to avoid is constantly 
being reminded of the goal (an over-general index). In Laureli's agent architecture, the special- 
ization mechanism provides a way to add constraint to when a goal is applicable. So if Laureli 
gets an over-general continuation (usually built by the generalization procedure) the specialization 
procedure will simply add more conditions to it from other future steps in the plan. 

Suspending and reactivating goals per se is only one aspect of this work. Of equal concern is 
whether we can manage goals in a timely fashion over a long lifetime. At this time, we still have a 
non-linear slowdown over a life of 300 simulated days. The non-linear slowdown seems to be due 
to some quadratic algorithms in the matching procedure and we are currently investigating their 
source. Once we have found the reasons for the quadratic effect, we would expect to see the simple 
linear slowdown predicted by Doorenbos' [Doorenbos, 1994] theoretical analysis. Since even this 
linear slowdown will prove untenable in the long run, we are currently looking at ways to achieve 
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a sub-linear bound, at the cost of having to actively reconstruct memories for events in the distant 
past. 
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